

Panel 1 – Energy Efficiency Management

Knowledge Base, Decision Support Tool & Railenergy Website

Roland Nolte, IZT Berlin

Energy Efficiency Days 2009, Railenergy Conference Tours, 23.9.2009

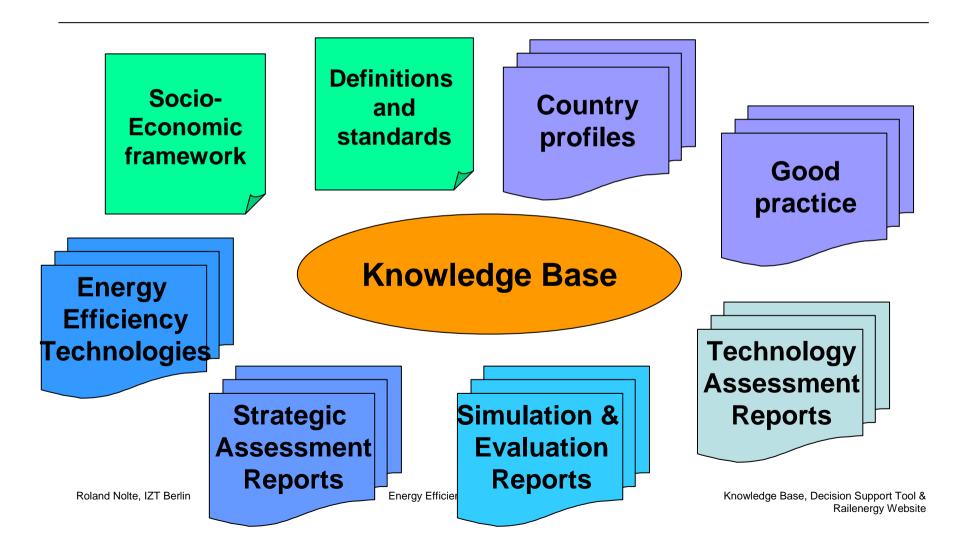
How do I get access to Railenergy results?

By means of internet-based tools!

- 1. Railenergy Knowledge Base
- Decision Support Tool

made accessible via the Railenergy Website

Railenergy Knowledge Base (1)


Why?

- 1. Store all relevant project results in a structured way
- 2. Provide a basis for easy access to all information
- 3. Establish a new reference for energy efficiency for railway systems

Railenergy Knowledge Base (2)

Decision Support Tool - DST

Why?

- Provide an instrument for calculating energy & cost savings for Railenergy technologies
- Illustrate the impact of energy efficiency technologies on energy savings, costs and CO₂ emissions
- Allow user-defined input data (energy prices, energy mix, scenarios)
- "Play" with settings & options (system behaviour & saving strategies)
- Support the preparation of energy efficiency strategies

DST - Input Data & Calculation Functionalities

Fixed Input

Energy efficiency potentials Key performance Indicators Energy prices & mix (default)

User Input

Energy Prices
Company Energy Mix
Operational Scenarios

Energy & Cost Calculations

Output:

Energy & cost savings CO₂ emission reductions LCC aspects

Roland Nolte, IZT Berlin

Knowledge Base, Decision Support Tool & Railenergy Website

Railenergy Website – Structure & Navigation

Energy Efficiency Solutions for Railway Rolling Stock, Rail Infrastructure and Train Operation

Search Print Contact

Sitemap | Disclaimer | Accessibility

Home

GENERAL

Introduction

Definitions / Glossary

Standards

System Description

Country Profiles

Framework

TECHNOLOGIES

Descriptions

Evaluations

Strategic Assessments

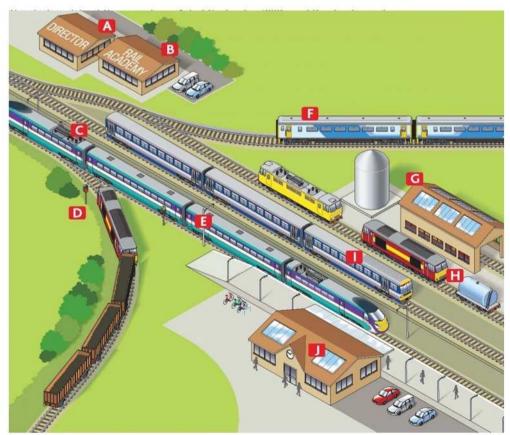
RELATED PROJECTS

Trainer

GEKKO

CALCULATIONS

Energy Savings


Costs / LCC

CO2

Railenergy is an Integrated Project co-funded by the European Commission under the 6th Framework Programme for Research and Development. The full name of the project is "Innovative Integrated Energy Efficiency Solutions for Railway Rolling Stock, Rail Infrastructure and Train Operation."

The Railenergy Website – first content examples

Sitemap | Disclaimer | Accessibility

Energy Savings Costs / LCC CO2

unife

UIC

Energy Efficiency Solutions for Railway Rolling Stock, Rail Infrastructure and Train Operation

Search Print Contact

Sitemap | Disclaimer | Accessibility

go back to overview

Home

GENERAL

Introduction

Definitions / Glossary

Standards

System Description

Country Profiles

Framework

TECHNOLOGIES

Descriptions

Evaluations

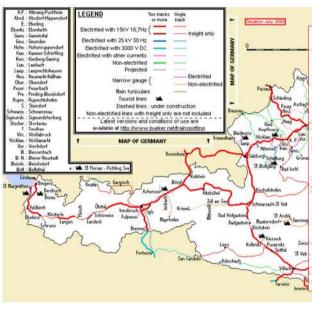
Strategic Assessments

RELATED PROJECTS

Trainer

GEKKO

CALCULATIONS


Energy Savings

Costs / LCC

CO2

AUSTRIA

The Austrian Federal Railways (ÖBB, Österreichische Bundesbahnen) is the national railway company of Austria. A new organization structure was put in place in 2004, with the creation of the ÖBB Group (controlled by ÖBB-Holding AG), that encompasses several companies in the different activity areas, with individual business results. Among those, ÖBB-Personenverkehr AG is in charge of passenger transport, and Rail Cargo Austria AG is in charge of freight transport, ÖBB-Infrastruktur Betrieb AG and ÖBB-Infrastruktur Bau AG are respectively responsible for maintenance of railway lines, stations, and infrastructure; and infrastructure planning, management, and construction, There are plans to unite both ÖBB-Infrastruktur Betrieb AG and ÖBB-Infrastruktur Bau AG in early 2010. There were 15 licensed railway undertakings in Austria in 2006.

VIDEO ₩

Guided Tour: learn more about....

EVENTS ▶

Electricity generation mix

	Coal	Oil	Gas	Nuclear	Others, non renew.	Hydro- electric	Wind	Others, renew.
Austria	13	2,8	19	0	0,5	61	0,5	2,9

Energy Efficiency Solutions for Railway Rolling Stock, Rail Infrastructure and Train Operation

Search Print Contact

Sitemap | Disclaimer | Accessibility

Home **GENERAL** Introduction Definitions / Glossary Standards **System Description Country Profiles** Framework TECHNOLOGIES Descriptions **Evaluations** Strategic Assessments RELATED PROJECTS Trainer **GEKKO** CALCULATIONS **Energy Savings** Costs / LCC co_2

unife

Technologies

Railenergy aims at the development of new validated energy efficiency oriented railway technologies for trackside and on-board sub-systems and equipment. The technologies in the Railenergy project were developed in the four technologies driven subprojects.

☐ Rolling Stock☐ Infrastructure☐ Operation	Technology Readiness Level TRL
☐ Passenger ☐ Freight	System Test, Launch & Operations TRL 9
☐ AC ☐ DC ☐ Diesel	System/Subsystem TRL 8 Development TRL 7 Technology Demonstration TRL 5
Service Type	TRL 5
☐ Suburban ☐ Regional	Technology Development TRL 4
☐ Inter-city☐ High-speed	Research to Prove Feasibility
☐ Freight	Basic Technology Research

TEC	CHNOLOGIES
Eco	o-driving
DC	Substation
Rea	al time management
2x 1	1.5 kV DC Traction System
Asy	ymmetrical system
Par	rallel substation
Red	duced line impedances
Inci	reased line voltage (4kV)
Tra	ckside Energy Storage Unit
	-board energy storage technology
Use	e of Waste Heat
Sup	perconducting transformers and
ind	uctances for railway traction
	dium frequency energy distribution
Inn	ovative hybrid diesel electric propulsion
Nev	w PWM technique to optimize converter
con	mmutation losses
Inp	ut voltage management
Nev	w control tech. to use braking energy
Nev	w control tech. to reduce converter energy
con	nsumption during vehicle coasting
Act	tive filtering tech. to reduce Input passive
	er (reactors) losses
Opt	timization of Converter losses vs. ambient
	nperature
	hitectural solutions to integrate traction
and	d auxiliary converters
	hitectural solutions to save energy during
nor	rmal operation
	use of converters energy loss
	Loads management
	e of a centralized cooling system for
trac	ction and auxiliary converter

Energy Efficiency Solutions for Railway Rolling Stock, Rail Infrastructure and Train Operation

Q .

Search Print Contact

Sitemap | Disclaimer | Accessibility

go back to overview

Home

GENERAL

Introduction

Definitions / Glossary

Standards

System Description

Country Profiles

Framework

TECHNOLOGIES

Descriptions

Evaluations

Strategic Assessments

RELATED PROJECTS

Trainer

GEKKO

CALCULATIONS

Energy Savings

Costs / LCC

CO2

Reversible DC Substation

Technologies / Infrastructure / Reversible DC Substation

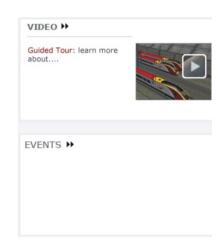
Description

New technology includes reversible DC substation able to recover into the upstream network almost total regenerative braking energy (98% of recoverable regenerative braking energy), after leaving priority to natural exchange between trains...

Advantages

Range of application

Current development stage: prototype


Time to market: 201x

+ Energy efficiency potential

Technology title	Technology field	Description	Operational evaluation	Strategic assessment
Reversible DC Substition	Infrastructure	()	()	Ü
Real Time Management	Infrastructure	69	63	0
2x1.5 kV DC Traction System				
Reduce line impedances				
Increase line voltage (4 kV)				
Trackside Energy Slorage Unit				

Increase line voltage (4 kV) Trackside Fnergy Stronge Unit DS 3 / Use Case 3.3 General description General data, description of regional line line Utrecht - Zwolle, map, rolling stock (also figure). Haarlem CAmsterdam Anishers Anishers Littecht / wolle Utrecht / wolle Technical description (Baseline) + Operational description (Baseline)

■ Infrastructure
■ DC

Related Downloads:

☐ Technology Assessment Report
 ☐ Strategic Assessment Report
 ☐ Use Case Description

How can I get involved?

- Provide information on good practice (projects, measures, activities)
- Update & upgrade EVENT technologies
- Support development of Railenergy website (user workshops, contributions, editorial work,...)
- Provide energy consumption data for your rolling stock (Railenergy Performance Baseline)

Please contribute!

to make the Railenergy Knowledge Base & Website the new reference for energy efficiency for railway systems!

Thank you very much for your attention!