

Panel 4 – Energy Saving On Board

Basic Storage components

Dr. Markus Klohr, <u>Christian Lauszat</u> Bombardier Transportation GmbH

Scope & Objectives

- Screen actual technologies for onboard energy storage systems
- Definition and specification of the requirements for suitable storage systems
- Evaluation of the saving potentials on possible applications on operation modes
- Selection and description of the most suitable storage technology for the desired application
- Target: Reduction of the energy consumption 25-30% (Diesel Electric Multiple Unit as major application)

- Technology screening for onboard storage elements
 - Main technologies considered

Supercaps,

Batteries,

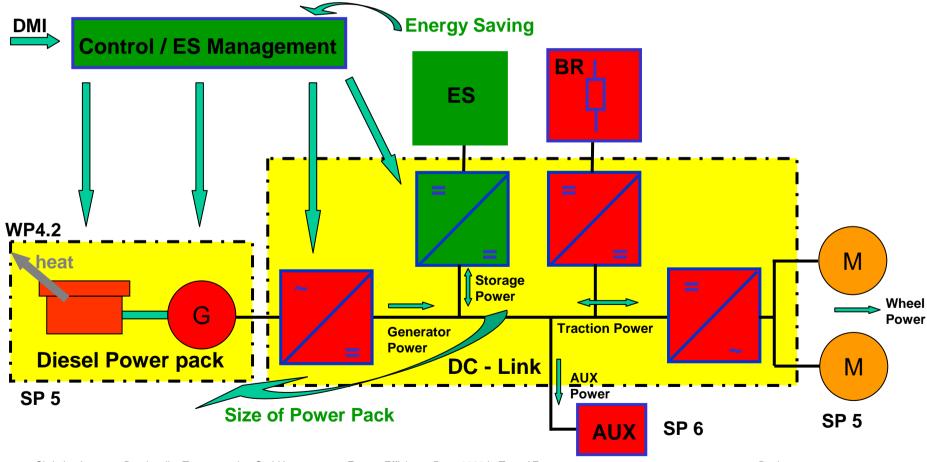
Flywheels

Hybrid storage

- Main saving aspects:
 - Time savings (additional power to the DC link in Booster operation)
 - Energy saving (operation in an energy optimized range or shorter operation)

Selection of the most valuable application

	energy		space and				
	saving	demonstration	weight	power	energy	posibility of	
vehicle type	potential	scenario	available for	needed	needed	regeneration	operating mode
DMU-regional	++	3	good *)	medium	medium	no	many stops
DMU-ICT	+	2	fair - poor		very high	no	few stops
EMU-DC-regional	+	3	fair	medium	high	limited	many stops
EMU-DC-ICT	0	2	fair	high	very high	limited	few stops
EMU-AC-regional	0	3	very poor	medium	high	good	many stops
EMU-AC-ICT	-	1 (2)	very poor	high	very high	good	few stops
Loco-Diesel-freight	0	2	very poor	very high	very high	no	very few stops
Loco-Diesel-shunting	++	n.a.	fair	low	medium	no	many stops
Loco-Diesel-passenger-regional	++	3	very poor	high	high	no	many stops
Loco-Diesel-passenger-long.dist.	+	2	very poor	very high	very high	no	few stops
Loco-AC-freight	-		very poor	very high	very high	good	very few stops
Loco-AC-passenger-regional	0	3	very poor	high	high	good	many stops
Loco-AC-passenger-long.dist.	-	1, 2	very poor	very high	very high	good	few stops
Loco-DC-freight	-	2	poor	very high	very high	limited	very few stops
Loco-DC-passenger-regional	+	3	poor	high	high	limited	many stops
Loco-DC-passenger-long.dist.	0	2	poor	very high	very high	limited	few stops
Metros	+	n.a.		medium	medium	limited	many stops
LRVs	+	n.a.		low	low	limited	many stops


demonstration scenario:

- 1) passenger (AC)
- 2) mixed traffic, int.
- 3) passenger transport regional
- *) downsizing of existing equipment

Vehicle system overview DMU with ES

- Requirements on onboard energy storage systems
 - Storage Power
 - Storage Energy
 - Weight
 - Lifetime
 - Yearly cycle capability
 - Environmental conditions

Vehicle - Target of lifetime of a storage system	Value	
Vehicle lifetime	30 years	
Operation hours	19 hours	
Average traveling distance	5 – 20 km	
Yearly cycle cpability	20000 - 72000	

Vehicle - Required energy	Value	
2 car 375 kW Diesel	2,8 kWh	
3 car 375 kW Diesel	4,2 kWh	
3 car 500 kW Diesel	4,2 kWh	

Vehicle -Additional weight of storage (target)	Value
2 car 375 kW Diesel	1,3-2,0 t
3 car 375 kW Diesel	1,7 - 2,6 t
3 car 500 kW Diesel	1,8 - 2,7 t

Results achieved and possible implementation

- Collection of the data and evaluation of the possible system concepts
 - For the selected regional application,
 - For agreed load profile
- For the time being double layer capacitors (DLC) are the most suitable technology
 - Most energy efficient operation in railway applications especially regional trains.
 - Most industrialized status compared to the other considered technologies.
- Hybrid solutions (NiMH batteries & DLC) for special customized profiles
- Energy storage system purely based on NiMH batteries is not an appropriate technology.
 - Transfer of the Li-lon mass production technology from automotive hybrid field optimized solution.
- Flywheel solution could be an alternative
 - missing field experience
 - steps towards industrialization

Next Steps & Outlook

- Evaluation in simulations in WP2.5
- For other Diesel electric railway applications different load profiles could be applicable
- Will be investigated in following European Projects like "CleanER D" (Hybrid sub project).
- Various applications and experiments are developed, used or studied.
- Many solutions are in the market entry stage.

Thank you for your attention!

Bombardier Transportation GmbH

Christian Lauszat

PGR/TSSA

Am Rathenaupark

D 16761 Hennigsdorf

Christian.lauszat@de.transport.bombardier.com