

Panel 4 – Energy Saving On Board

On Board Efficient Energy Management

Luigi Accardo Ansaldobreda

Luigi Accardo, Ansaldobreda

Energy Efficiency Days 2009 in Tours/ France

Scope & Objectives

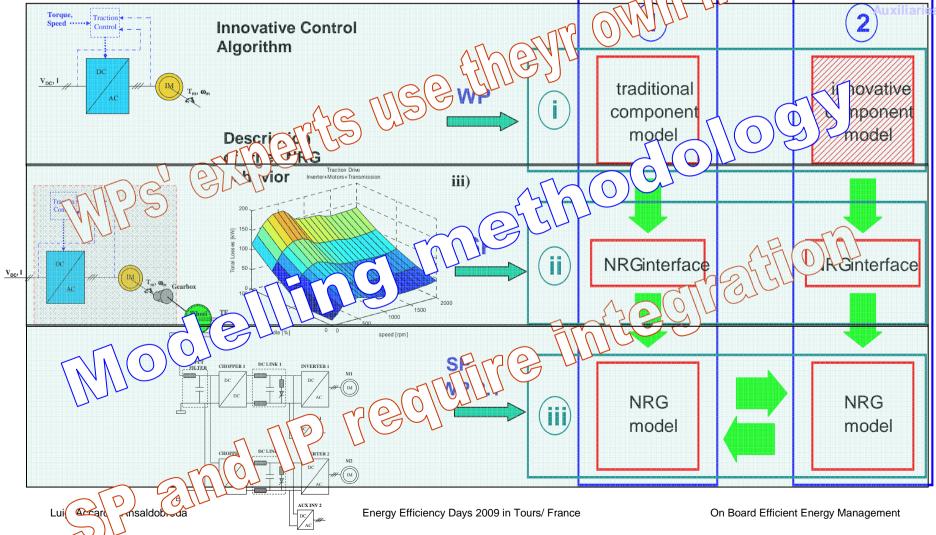
• To get a significant contribution to the overall energy efficiency of the railway system by means of a more efficient on-board energy management of all the major equipment, related to the complete power train, auxiliary systems and cooling devices.

o Innovative outputs

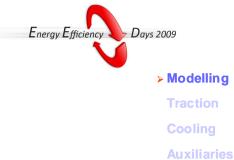
- Modelling methodology for NRG calculation in propulsion and auxiliary
- Optimised control for on-board traction
- Optimised energy architecture and operation for auxiliary systems
- Centralized cooling system for traction and auxiliary converters

• Expected benefits

- Energy saving 0.5%
- o General design optimization
- Weight and dimension reduction

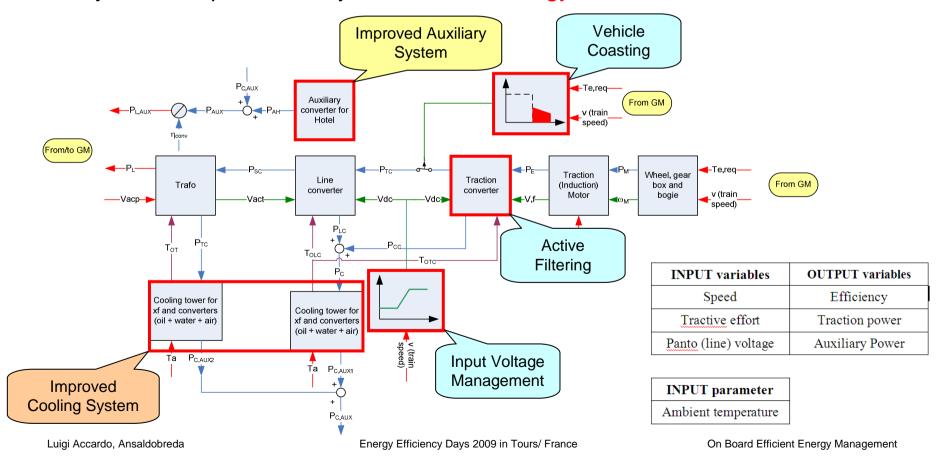


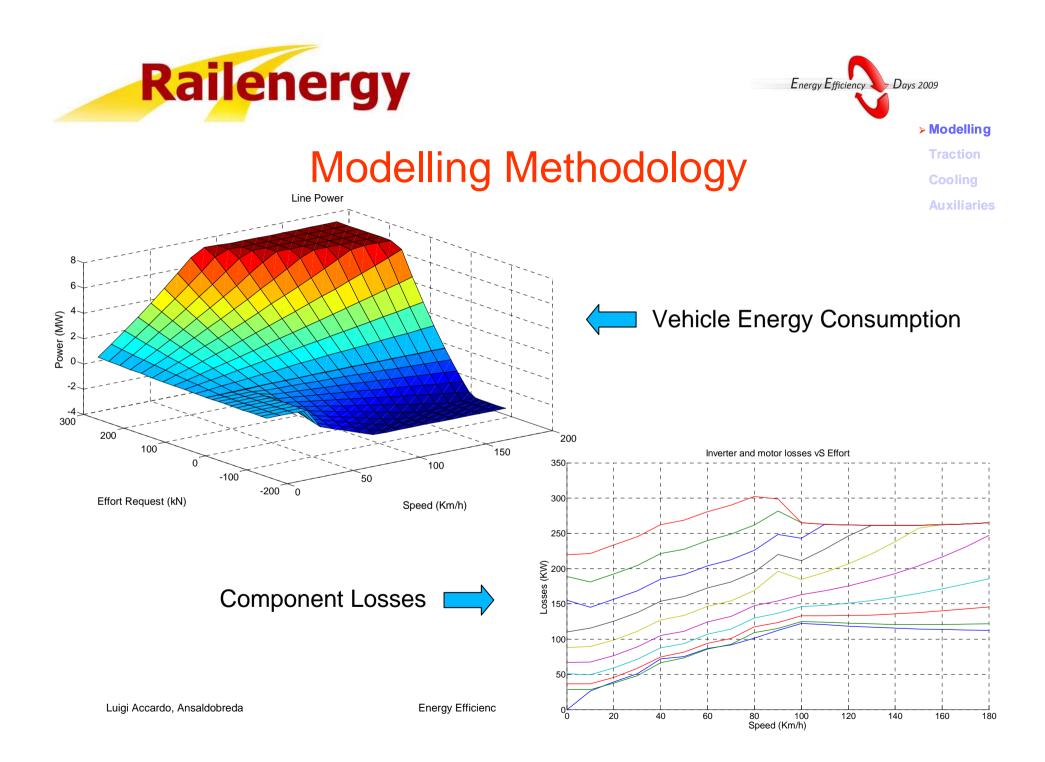
Energy Efficiency


> Days 2009

➤ Modelling

Traction





Modelling Methodology

• Each component with an impact on the energy behavior of the traction system is represented by means of an Energy Model.

0

- Reduction of energy consumption during Vehicle Coasting.
- Case Study: AC EMU for Regional Traffic. Swedish Route Märsta Södertälje

	time(s)	EIn(kwh)	EIn_T(kwh)	EIn_B(kwh)
Märsta – Södertälje_C	4548	1183.4	1662.1	478.7
Turn around Södertälje_C	5087	1236.7	1715.4	478.7
Södertälje_C – Märsta	9503	2319.3	3286.6	967.3
Turn around Märsta	9983	2366.7	3334.0	967.3

	time(s)	EIn(kwh)	EIn_T(kwh)	EIn_B(kwh)
Märsta – Södertälje_C	4548.	1118.1	1597.4	479.3
Turn around Södertälje_C	5087	1171.4	1650.6	479.3
Södertälje_C – Märsta	9503.	2190.5	3159.0	968.4
Turn around Märsta	9983	2238.0	3206.4	968.4

Energy Efficiency

Days 2009

Modelling

> Traction

Cooling Auxiliaries

Total Catenary Energy Consumption = 2238.0 kWh Lui

Energy Saving = (2366.7-2238.0) = 128.7 kWh → 5.44%

Cooling System – MV Loads Management

- Efficient MV loads management (fans, pumps...) allows to reduce:
 - Energy consumption when maximum cooling performances are not requested (during stops in the stations, favourable climatic conditions)
 - Environmental impact (noise, dust hoisting, clogging for snow presence)
- Case Study: EMU on International Route Amsterdam Brussels

$$P(f_2) = P(f_1) * \left(\frac{f_2}{f_1}\right)^3$$

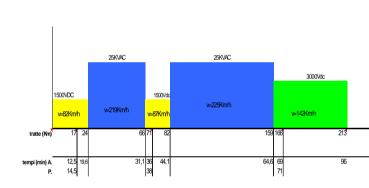
Fan Application Example

Pump Application Example

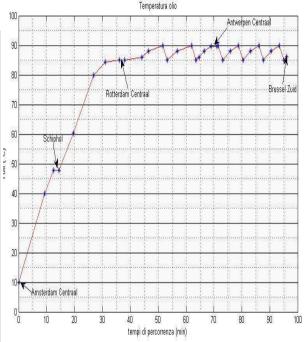
Fan Operation	Rotation Speed	Static Pressure (Pa)	Air Flow (l/s)	Power (kW)	Power Reduction (%)	Feeding Frequency (Hz)	Water Flow (Hz)	Flow Reduction (%)	Head (Bar)	Head Reduction (%)	Power (kW)	Power Reduction (%)
2 poles (Max Speed)	2900	763	2000	3		Nom 50	202.07		3.13		3.19	
4 poles (Half Speed)	1450	190	1000	0.375	87.5	40	161.65	20.0	2.00	36.1	1.63	48.9

Luigi Accardo, Ansaldobreda

Auxiliaries



Auxiliaries


Traction Cooling System – MV Loads Management Cooling

Loads management strategy

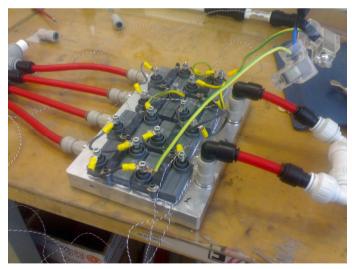
EMU on the Route: Amsterdam - Brussel

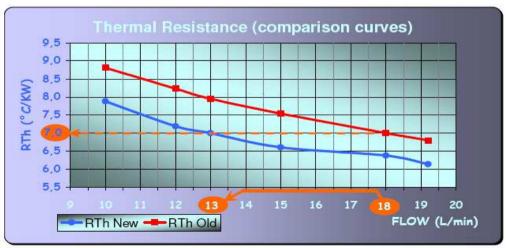
	lagomont out		
Water Temperature Range / Train Speed	Loads Configuration	Loads Absorbed Power KW	
TH2O ≥ 60°C	Couple fans MAX SPEED	9.19	
v > 5 Km/h	Pump 50 Hz	9.19	
58°C ≤ TH2O < 60°C	Couple fans HALF SPEED	3.95	
v > 5 Km/h	Pump 50 Hz	5.85	
TH2O < 58°C	Couple fans HALF SPEED	2.39	
v > 5 Km/h	Pump 40 Hz	2.58	
TH2O ≥ 60°C	Couple fans HALF SPEED	2.05	
v ≤ 5 Km/h	Pump 50 Hz	3.95	
58°C ≤ TH2O < 60°C	1 Fan HALF SPEED	3.57	
v ≤ 5 Km/h	Pump 50 Hz		
TH2O < 58°C	1 Fan HALF SPEED	2.01	
v ≤ 5 Km/h	Pump 40 Hz	2.01	

Liquid temperature profile

	ET: Total Energy absorbed by the vehicle on the planned route [kWh]	Energy absorbed by MV loads [kWh]	Energy absorbed by MV loads with Optimized Management [kWh]	ES: Energy Saving [kWh]	Energy Saving ES / ET (%)	
cardo, Ansaldobreda	10752	149.32	46.48	102.84	0.96	Efficient Energy Manageme

Luigi Acc

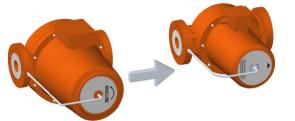



Auxiliaries

Cooling System – High Efficiency Cold Plates

- Lower operating temperature of electric devices \rightarrow Higher reliability
- Lower cooling flow \rightarrow Use of pumps with lower consumptions and cost
- Optimisation of the whole hydraulic circuit → Reduction of weight and dimension

The proposed technology uses particular offset fins ("turbulators"), to insert in a machined groove, in order to increase the turbulence of cooling liquid and then to increase the thermal behaviour.



Energy Efficiency Days 2009 in Tours/ France

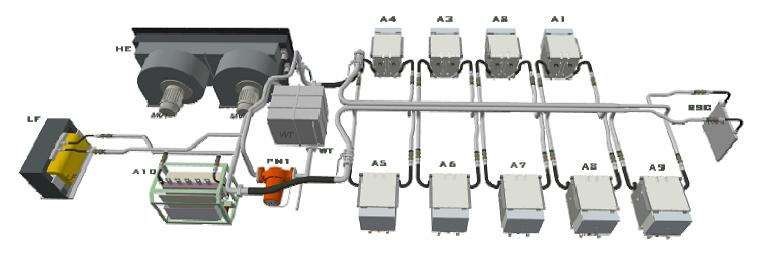
Cooling System – High Efficiency Cold Plates

		Power Converter	Train (Power Converter x 4)
Pump in use	Maximum absorbed power (KW)	3,14	12,56
Fullp in use	Absorbed energy * (KWh)	5,02	20,08
New Pump (with high efficiency	Maximum absorbed power (KW)	1,61	6,44
cold plates)	Absorbed energy * (KWh)	2,58	10.32
	Energy saving (KWh)	2,44	9.76
	Energy saving (%)	48.6	

 Case Study: EMU on International Route Amsterdam – Brussels

J	ET: Total Energy absorbed by the vehicle on the planned route [kWh]	ES : Energy Saving [kWh]	Energy Saving ES / ET (%)
	10752	9.76	0.10

Energy Efficiency Days 2009 in Tours/ France



Cooling

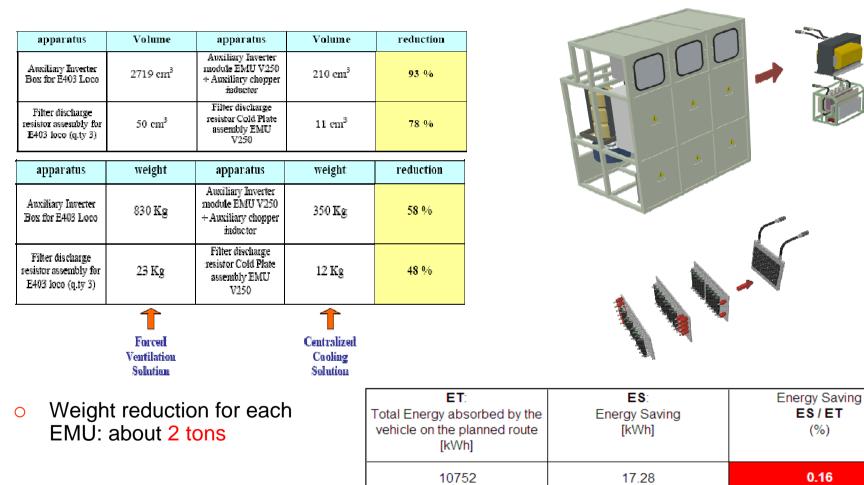
Auxiliaries

Centralized Cooling System

- "Centralize" means to concentrate all the equipments that need to be cooled in the same cooling system, in order to achieve:
 - Reduction of Weight and Dimensions
 - Improvement of Cooling Efficiency
 - Reduction of MV loads (energy consumption and noise)
- Case Study: EMU on International Route Amsterdam Brussels

Luigi Accardo, Ansaldobreda

Energy Efficiency Days 2009 in Tours/ France

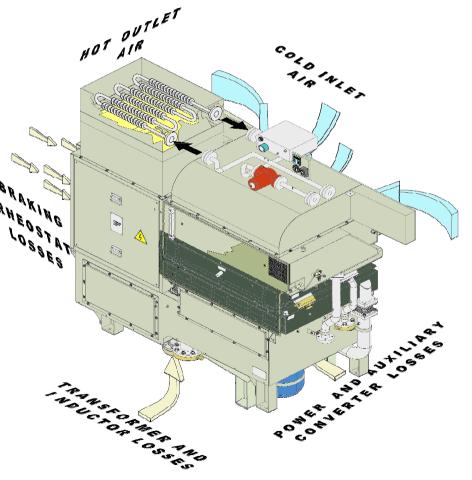


Traction

Auxiliaries

Cooling

Centralized Cooling System



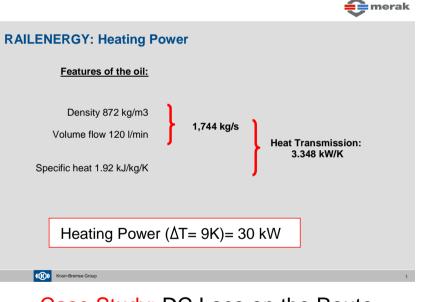
Recovered Heat System

Auxiliaries

Cooling

- Report Colling TSystem
- On the top of the outlet channel
- If as both indet and a diated engrise oil beatries glass for error to see up of one the wants for sollee, theat the cheilf is orded r tandes and the error, where and the of the chile ostat.
- An engolitabilitic systeming a toxiglet seto tree bingutation, and caused soits of the teatheration of the beautreeroy bot. in the external ambient.

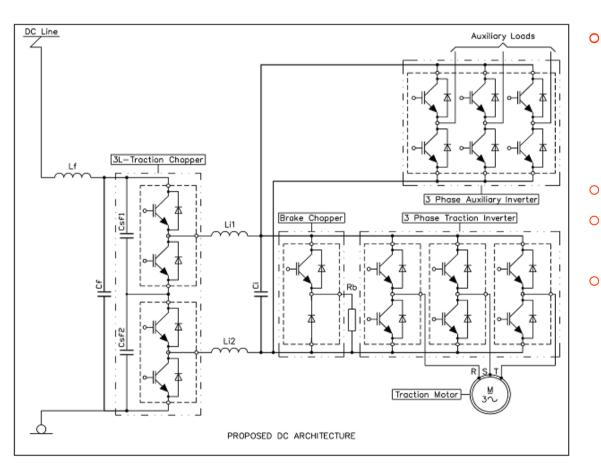
Energy Efficiency Days 2009 in Tours/ France



Heat recover - Power and Oil pressure drop (Core Thk: 100 mm) (Tair: 260 ℃; Toil: 45 ℃) 375 **[upar**] drop **e** at 275 g ' ₂₀₀ **ö** Oil Flow [l/min]

Energy recovery evaluation: up to 25%

of waste energy recovered for a


possible reuse on the vehicle

Case Study: DC Loco on the Route Gijon – Leon

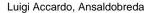
	ET: Total Energy absorbed by the vehicle on the planned route [kWh]		Energy Saving ES / ET (%)
Luigi Accardo, Ansaldobreda Ene	^{rgy} 8104	60	0.74

Traction and Auxiliary converters integration

- **Craratioonsiden**ponents:
 - Line filter: (Lf, Cf)
 - o DC-DC chopper (3 levels)

Energy Efficiency

Davs 2009


Modelling Traction

> Auxiliaries

- o Intermediate filter (Li, Ci)
- DC-AC converter (inverter)
- Traction side:
- AuxillaceASidenverter (inverter)
 - Line filter (Lfas, Cfas)
- Auxilia Cie B Siddet opper (step-down)
 - o Intermediate filter (Lias, Cias)
 - o DC-AC converter (inverter)n)
 - o Intermediate filter (Lias, Cias)
 - o DC-AC converter (inverter)

normal service.

Ο

Vehicle Type

Vehicle Composition

Nominal line voltage

Energy Efficiency Days 2009 in Tours/ France

On Board Efficient Energy Management

Max output power for 3.7 MW propulsion **Output power for** 300 kW auxiliary services

4 coaches DC EMU

Bo'2' + 2'2' + 2'2' + 2'Bo'

- Weight reduction for each EMU: about 5 0 tons (2% of full loaded weight)
- After a preliminary evaluation, no Ο appreciable reduction of electrical losses.

As a consequence of weight reduction, an

overall energy saving expected during the

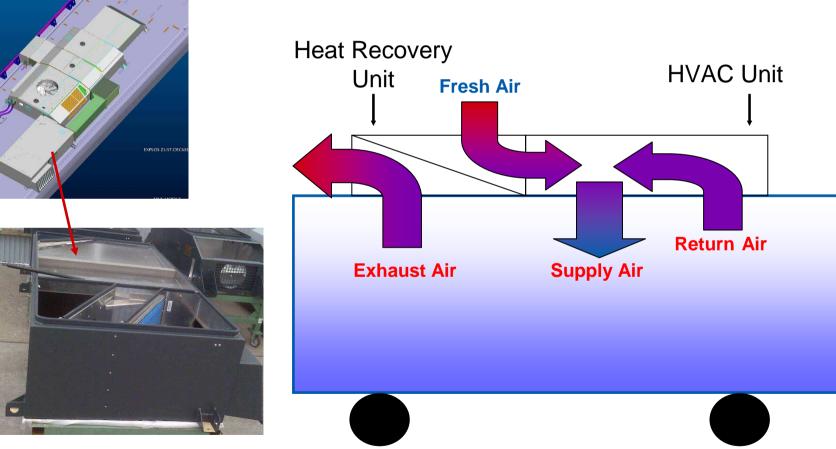
- 273 t **Full loaded weight**

3000 Vdc

- Case Study DC EMU for Regional Traffic
 - Components to be removed: 0
 - Line filter inductor \cap
 - Line filter capacitor 0
 - GTO stack assembly 0
 - FW diode assembly 0
 - Intermediate filter inductor \cap
 - Intermediate filter capacitor Ο
 - New auxiliary inverter: 0
 - six snubberless IGBT inverter \cap (4500V/900A IGBT modules)
 - single aluminium plate water cooled 0
 - direct connection to the DC link at 0 2400Vdc
 - Output characteristics: 400V-50Hz / Ο 300kW

Modellina

> Auxiliaries



Improved HVAC – Heat Recovery

Modelling Traction Cooling

> Auxiliaries

Energy Efficiency Days 2009 Modelling Traction

Cooling

Improved HVAC

> Auxiliaries

HVAC Technology	Heat Pump	Heat Recovery	Fresh Air Optimization	Refrigerant Supervision / Leakage Detection
Function	Reversion of the refrigeration circuit	Pre-heating / pre- cooling of external fresh air by exhaust air	Supply of fresh air depending on the real number of passengers	Supervision of the amount of refrigerant in the system circuit
Actual Applications	Not in Railways application because of wide temperature range requirements and poor efficiency below 5°C	-	-	-
Railways Existing Technology	To aid the existing technologies with the Heat Pump when it can be efficient	Wastage of the energy of warm/cool exhaust air	Supply of fresh air depending on the number of seats	Refrigerant amount check during regular maintenance
Preliminary Analysis Results	Up to 40 % reduction of energy consumption (climatic zone II)	Up to 30 % reduction of energy consumption (climatic zone II)	Up to 30 % reduction of energy consumption (climatic zone II)	Increase of reliability Limit the reduction of the C.O.P. because of refrigerant leakages

Luigi Accardo, Ansaldobreda

Energy Efficiency Days 2009 in Tours/ France

Results achieved and possible implementation

- Energy Modelling
 - N.5 Energy Models (Look-Up Tables) for Baseline Simulation at System Level: DC Loco for Pass. and Freight, AC Loco for Pass. and Freight, AC EMU.
 - N.3 Energy Models (Look-Up Tables) of AC Loco with "Coasting Losses Reduction", "Input Voltage Management", "MV Loads Management".
- On-board Traction
 - "Coasting Losses Reduction": Single Train run for AC EMU on <u>Regional Traffic</u>, +5% Energy Saving.
- Cooling System
 - "MV Loads Management, Centralized Cooling System, High Efficiency Cold Plates": a total of +1.2% Energy Saving for Multivoltage Passenger EMU on <u>International Route</u>. Additional Energy Saving due to weight reduction.
 - "Recovered Heat System": +0.7% Energy Saving for Passenger Intercity DC loco.
- Auxiliaries
 - "Propulsion and Auxiliary Converter Integration": 2% of weight reduction for DC EMU on <u>Regional Traffic</u>.
 - "Improved HVAC with Heat Recovery": up to **30%** reduction of HVAC Energy consumption.

Next Steps & Outlook

- Energy Models (Look-Up Tables) set of the proposed innovations to be finalized for the simulation at System Level.
- **Simulations** of the proposed innovations at Subproject / Workpackage level to be finalized, according to the Technology Matrix, for the relevant Demo Scenes.
- Evaluation and Validation of the results at Subproject / Workpackage Level.