

Panel 5 – Innovative Traction Systems

Superconducting traction transformer Harald Schmidt and Günter Ries Siemens AG, Corporate Technology

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Railenergy

Why superconducting transformers ?

Wheel load is critical

- serious weight limits on rail vehicles 0
- Transformer weight is relevant 0
- **Solution**: transformer with windings from High Temperature Superconductor (HTS)

Advantages:

- reduced winding loss
- > 30 40% less weight
- > 20...50% less volume

Disadvantages:

- \otimes needs cooling by liquid nitrogen at \leq -196 °C (\leq 77 K)
- [®] Double walled, vacuum isolated cryostat ("Thermo flask")
- \otimes Cooling by cryogenic cooler \rightarrow drive power as loss

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Additional benefits:

Oil free, no fire hazard

No aging of cold insulation

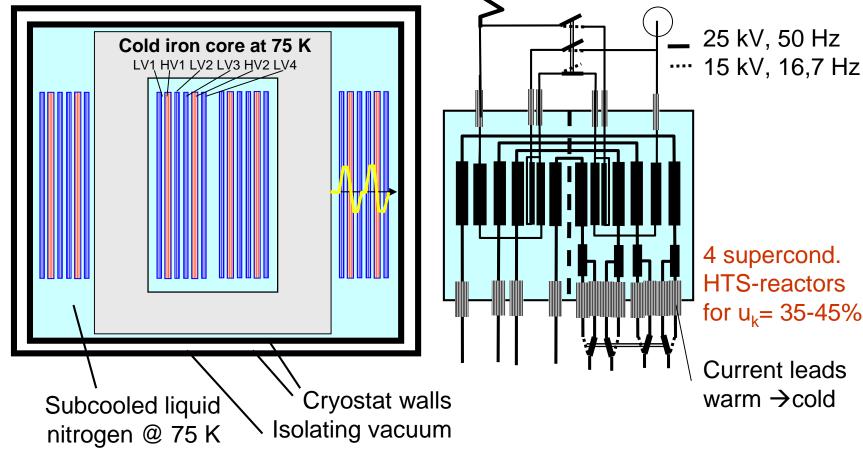
Energy Efficiency

Superconducting traction transformer

Days 2009

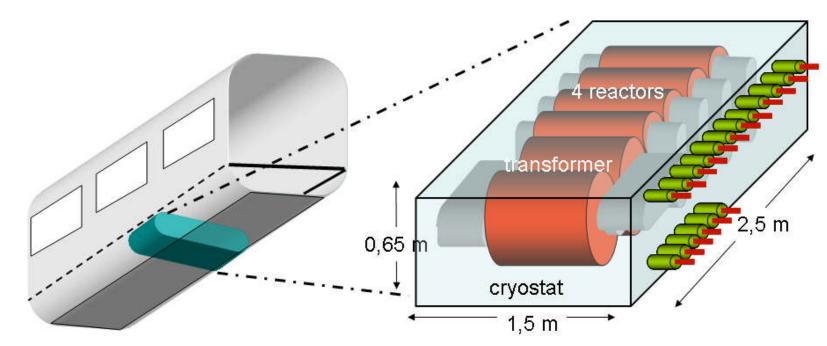
Activities performed & Status

• Main specifications for ICE 3 MS transformer


2 AC-power systems:	16,7 Hz	50 Hz		
primary	15 kV, 4,6 MVA	25 kV, 4,6 MVA		
secondary	4 x 2 kV, 1,15 MVA	MVA 4 x 2 kV, 1,15 MVA		
Short circuit voltage u _k	35% - 45%	35% - 45%		
Maximum dimensions including cryocooler	height < 0,65 m footprint < 2 m x 5 m			
Overall efficiency	> 99%	> 99%		

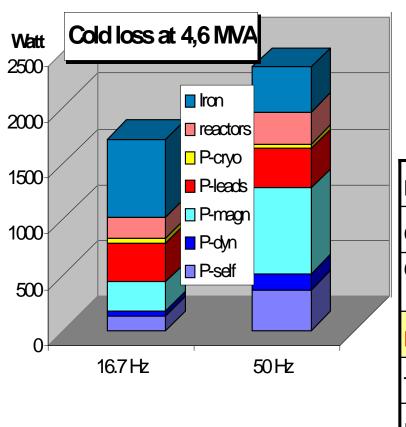
Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Setup of ICE3 MS HTS-traction transformer



Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Underfloor HTS-transformer with 4 reactors



Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

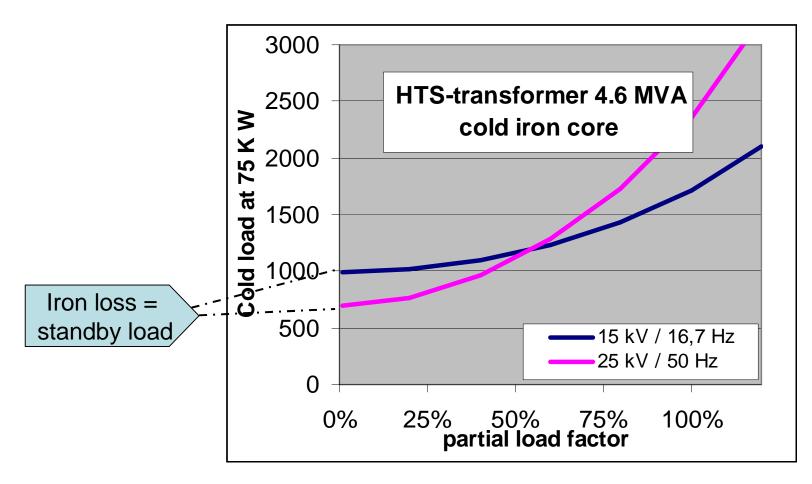
Results / loss balance in HTS-transformer

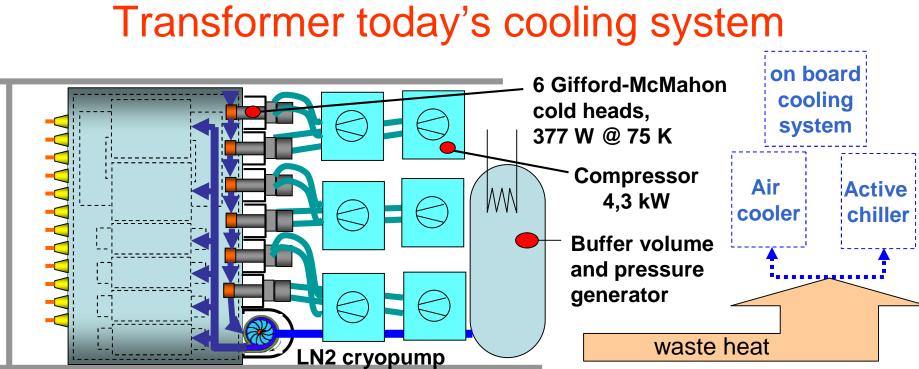
Cold loss at low temperature:

- : heat flux via cryostat walls
- : loss in cold iron
- : heat flux via current leads
 - : magnetic AC-losses in HTS-wire

Loss at nominal 4.6 MVA	16.7 Hz	50 H
Cold loss transf. + 4 reactors	1,7 kW	2,4 k
Cryocooler power = warm loss	26 kW	36 k
Efficiency HTS-transformer	99,4%	99,2
Transformer weight	5,6 t	
Efficiency Cu-oil transformer	~92% / 9,6 t	

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France





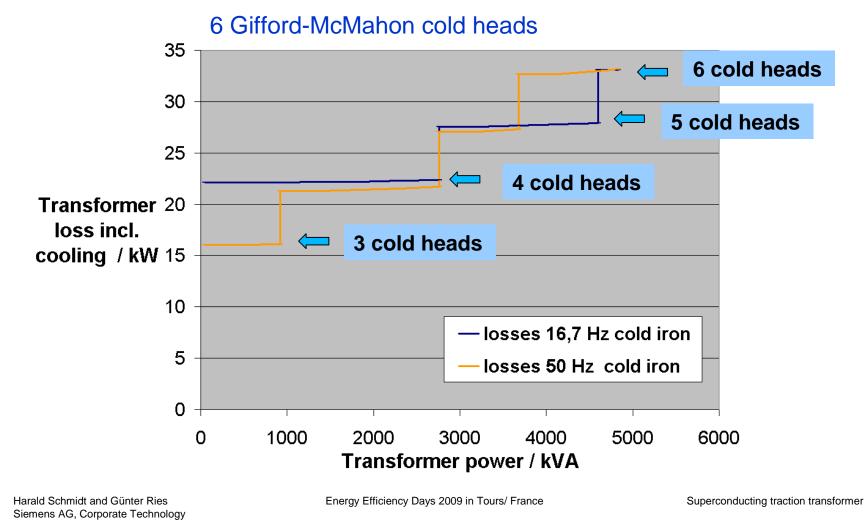
Cold loss in HTS-transformer & reactors

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

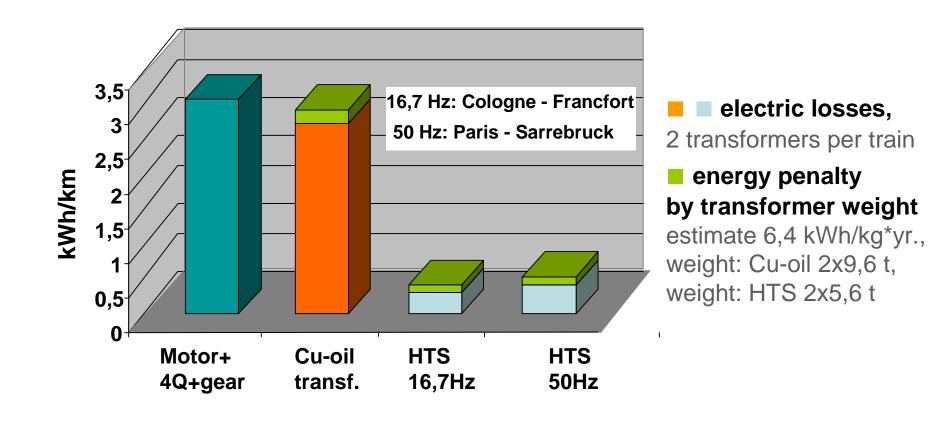
- Cooling by forced flow sub-cooled liquid nitrogen at 75 K = -198 $^{\circ}$ C 0
- 6 commercial cryo-coolers required for full load at 50Hz 0
- Control of variable refrigeration demand by on/off switching 0

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Superconducting traction transformer


Energy Efficiency

> Days 2009


Power consumption in dependence of load

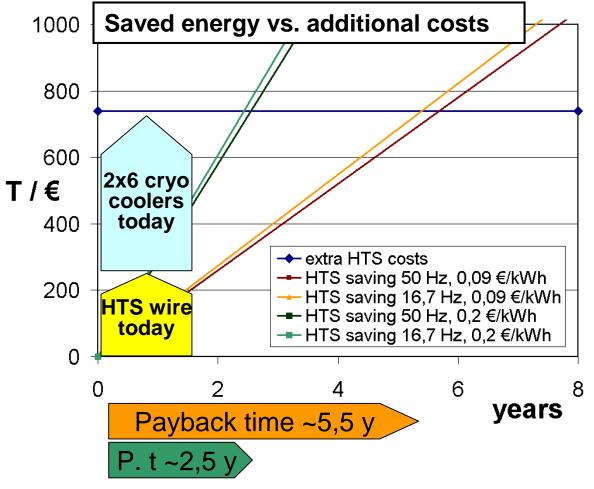
Loss/km for typical ICE3 drive cycles

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Annual savings by HTS-transformer in ICE3

o 600.000 km/year, typical drive cycles

Drive cycle	Paris - Sarrebruck 25 kV/50 Hz		Cologne - Francfort 15 kV/16.7 Hz	
2 transformers	convent.	HTS	convent.	HTS
Electrical loss/year	1650 MWh	250 MWh	1650 MWh	180 MWh
Weight penalty	120 MWh	70 MWh	120 MWh	70 MWh
Transformer consumption	1770 MWh	320 MWh	1770 MWh	250 MWh
Energy saved by HTS		1450 MWh		1520 MWh
Estimated savings/year per train at 9 ct/kWh**		130 T€/y		137 T€/y


Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Superconducting traction transformer

n h /h

Amortization of HTS-technology in ICE3

2 transformers per train 0 600.000 km/year

Energy Efficiency

- **Today's additional cost** Ο of HTS-technology is estimated ~740 T€/train
- Cost of future HTS \mathbf{O} technology will drop with growing markets
- Growing energy price reduces significantly the payback time

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Superconducting traction transformer

Days 2009

Next Steps

- Data of HTS transformer as input into the global model. 0
- Market observation of the development of HTS conductors and 0 suitable cooling systems.
- Further discussion on operational aspects of HTS traction 0 transformer with operators.

Outlook

- HTS transformers can be built.
- HTS transformers will be economic 0 viable by increasing energy prices in the next decades.

First 1MVA-HTS transformer at SIEMENS in 2001. **Function & low** loss was demonstrated.

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

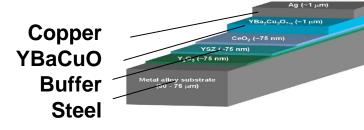
Thank you for your attention !!!!!!

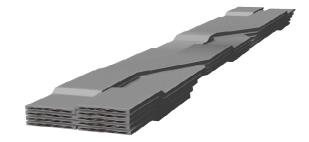
Questions???

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

o Back-up

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France




<u>High Temperature Superconductor HTS</u>

- New superconducting material class was detected 1987 Ο
- HTS wire has been developed, is commercially available 0
- Carries large currents ~30-100*jCu with zero DC-resistance 0
- AC-fields generate cold loss at ~77 K 0
- Know-how on loss mechanisms \rightarrow dedicated winding design 0

2G_HTS: 1 µm-HTS film on support tape

High current Roebel conductor

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

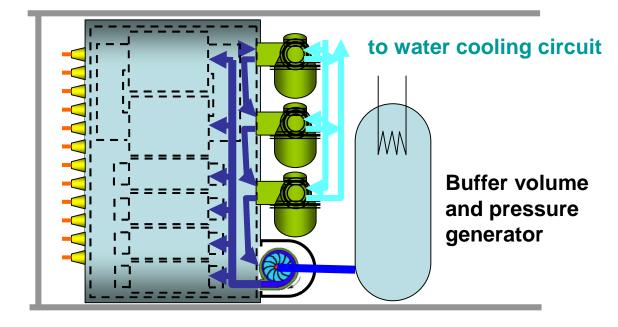
1 MVA Transformer

First HTS transformer at SIEMENS

Rated Power 1000 kVA 50 Hz Frequency 25 kV / 1.4 kV Voltage Short Circuit Voltage 25 % Temperature 65 K = -208°C Cold loss at 65 K 2700 W Stirling cryocooler power ~30 kW Efficiency 97,4%

Function & low loss was demonstrated

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France



Near term cryotechnology

• Under development: Stirling cryocooler "Sunmachine"

(a modification of domestic heat and power cogeneration unit) Expected: 3x900 W @ 75 K, 3x5 kW drive power weight ~700 kg, efficiency □99,6%

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Operational aspects of HTS-traction transformers in ICE 3 / Cooling

Cooling

- Closed cryogenic cooling system:
- Cooldown to 75 K by cryocooler:
- Cooldown to 75 K from LN2-tank:
- Train operation at loss of cooling:
- No catenary (LN2-pump by battery):
- Standby loss at RT (iron and leads)
- Service of GM-cryocoolers (today)

- no LN2-supply in normal operation
- ~12 days*
- several h 1 day
- ~1,4 h at 4,6 MVA, ~3h at 2,3 MVA*
- ~9 h* until 77 K
- 16 kW @ 50 Hz, 22 kW @ 16,7 Hz
- 2 years or 6000 operating hours

* source: M. Meinert (Siemens), doctor thesis TU Darmstadt 2006

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France

Superconducting traction transformer

9

A*

Z

Operational aspects of HTS-traction transformers in ICE 3 / Inrush current

Inrush current (zero winding resistance!)

- some damping by nonlinear V-I-curve of HTS Ο
- actively maintaining magnetization from the secondary* 0
- forced secondary short circuit to drive HTS resistive* 0
- * source: M. Meinert (Siemens), doctor thesis TU Darmstadt 2006

Harald Schmidt and Günter Ries Siemens AG, Corporate Technology Energy Efficiency Days 2009 in Tours/ France